EQ Coating

for Next Generation TBC and Environmental Coating Systems

National Institute for Materials Science, Tsukuba, Japan

New Bond Coat System, "EQ coating"

Concept

Equilibrium (thermodynamic) with the substrate = EQ Coating

Objective

To develop new bond coat systems that hinder interdiffusion with the substrate of Ni-base single crystal superalloy, so the formation of detrimental SRZ can be minimized.

The microstructure of / in Ni-base superalloys.

Compositions of EQ bond coat are designed along the tie-line of the substrate to achieve thermodynamic equilibrium.

New EB-PVD Apparatus, "EB Coater-CerM1"

Apparatus Specification

EB Power	16kW 1 Gun
Substrate Temp.	Max. 1100
Substrate Size Substrate Weight	Max. 200mm, L350mm Max. 10kg Vacuum, Oxygon, Inort Cas
Coating Rate	100 μ m/Hr
Ingot Size	Max. 50mm, L200mm

Fig. Schematic diagram of the coating chamber

YSZ Formation on EQ Coating

Coating Conditions

Pre-oxidation: 0.2Pa O₂ 1072 ,1Hr Substrate Temp. : 1007

Fig. Surface of 7YSZ

Features of Apparatus
Inner Carbon Heater with 30kW, 3 Sets Precise Control of High Substrate Temp.
Divided Crucible Inner Crucible : Up and Down Moving Rotation Flexibility in Ingot Shape and Size
Controllable Shutter Control of Deposition Structure

lal 100μm

Fig. Vertical sectional microstructure of TBC