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Abstract 

 
For jet engines to meet the ever-increasing demands of ecological 
compatibility, the compositions of Ni-base single-crystal 
superalloys have continuously evolved to cope with the increase 
in turbine entry temperature (TET) owing to the design that  
improve the thermodynamic efficiency of gas turbine engines. 
Over the past decade, the addition of Ru has been one of the main 
subjects of focus to enhance the temperature capability and 
contribute to the development of new generations of single-crystal 
superalloys. This paper reposts one of the latest Ru-bearing 6th 
generation superalloys developed by the National Institute for 
Materials Science (NIMS), TMS-238. TMS-238 is a promising 
candidate alloy for future turbine blade applications because it 
exhibits excellent and well-balanced mechanical and 
environmental properties. 
 
 

Introduction 
 
Ni-base single-crystal superalloys have excellent high-
temperature properties, and advances in the temperature capability 
of these materials have led to an increase in the efficiency of jet 
engines and gas turbines. 4th generation Ni-base superalloys 
contain 2–3 wt% Ru, which hinders the precipitation of 
topologically close packed (TCP) phases [1] and improves the 
high-temperature microstructure stability [2–4]. 4th generation 
superalloys have achieved temperature capabilities 30°C higher 
on average than those of the previous generation superalloys in 
terms of high-temperature creep strength. 5th generation 
superalloys have been invented by the optimization of alloying 
compositions, and the content of Ru has increased to 5–6wt%; the 
lattice misfit between the γ and the γ phases has been controlled 
to balance the interfacial strengthening and coherency, and the 
dislocation network at the interface of the γ and the γ phases has 
become finer than that of 4th generation superalloys in order to 
inhibit dislocation migration under stress. Thus, the high- 
temperature creep resistance of 5th generation superalloys is better 
than that of 4th generation superalloys [5].   
 
However, these 4th and 5th generations of superalloys are likely to 
have lower resistance against oxidation than the previous 
generations owing to the higher content of refractory elements 
such as Mo, Re and Ru [6, 7]. These refractory-based oxide 
species have relatively higher vapor pressures and can disrupt the 
continuity of protective Al2O3 formed on the surface during 
thermal exposure. To make 4th and 5th generation superalloys 
commercially viable, an improvement in oxidation resistance is 
imperative. In this study, a 6th generation superalloy, TMS-238, 
which exhibits both high-temperature creep strength and 

improved oxidation resistance, has been developed. The alloy 
design procedure involves utilizing the composition of TMS-196 
[8] as a base to optimize the alloy chemistry so as to improve the 
oxidation resistance and creep strength. High-temperature 
properties such as creep, oxidation and hot-corrosion resistances 
have been evaluated for this new superalloy; the experimental 
results have been compared with those of a 2nd generation 
superalloy CMSX-4 and a 4th generation superalloy MX-
4/PWA1497. 
 
 

Experimental Procedure 
 
TMS-138A, TMS-196 and TMS-238 were designed by using the 
Alloy Design Program [9] developed by NIMS. TMS-138A [10] 
is a 4th generation superalloy containing 5.8 wt% Re and 3.6 wt% 
Ru. TMS-196 is a 5th generation superalloy containing higher 
content of Re and Ru (6.4 wt% Re and 5.0 wt% Ru) to realize 
better mechanical properties than TMS-138A and to improve the 
oxidation properties by adding Cr. TMS-238 was designed to have 
mechanical properties similar to TMS-196 but improved oxidation 
and hot-corrosion resistances. The Mo and W contents were 
reduced and the Co and Ta contents were increased. The 
compositions of alloys used in this study are shown in Table 1. 
The single-crystal samples used for our experiments were 
vacuum-induction melted and fabricated using a standard 
directional solidification casting furnace. Materials were supplied 
as 10-mm cylindrical bars with orientations within 10 degrees of 
the [001] orientation. Then samples were solution heat treated and 
aged with no residual eutectics and no visible TCP phases in the 
microstructures. 
 
Tensile specimens of 4 mm in diameter and 22 mm in gauge 
length were machined from the heat-treated samples, and tensile 
tests were conducted at 400°C and 750°C. Tensile creep-upture 
tests were also conducted on heat-treated samples; specimens 
were machined into standard creep specimens and tested along the 
[001] direction to rupture under the following conditions: 
800°C/735 MPa, 900°C/392 MPa, 1000°C/245 MPa and 
1100°C/137 MPa. 
 
High-temperature cyclic oxidation tests were conducted at 1100°C 
in air for 1 h per cycle. Specimens were machined to 9 mm in 
diameter and 5 mm in thickness, and the surfaces were finished 
with 600-grade SiC paper polishing followed by cleaning with 
acetone. The change in weight of each specimen was measured at 
the end of each cycle. The hot-corrosion property was also 
investigated. Specimens measuring 9 mm in diameter by 5 mm in 
thickness were soaked in 75%Na2SO4+25%NaCl molten salt at 
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900°C for 20 h. Metal losses in thickness were calculated from 
weight losses after this 20-h soak. 
 
 

Results and Analysis 
 
In this section, the experimental results are presented and 
analyzed.  Table 2 shows the results of tensile tests conducted at 
400°C and 750°C. The 0.2% yield stress and UTS of TMS-138A 
are comparable with those of CMSX-4 at both temperatures; 
TMS-196 shows some improvement and TMS-238 exhibits the 
highest yield stress and UTS. Figure 1 shows creep performances 
of CMSX-4, MX-4/PWA1497, TMS-138A, TMS-196 and TMS-
238 with respect to the Larson-Miller Parameter. The creep-
rupture lives of TMS-238 are comparable to those of TMS-138A 
and TMS-196 at 800°C/735 MPa, 900°C/392 MPa, and 
1000°C/245 MPa. Interestingly, the creep-rupture life of TMS-
238 is significantly greater than that of TMS-138A and TMS-196 
at 1100°C/137 MPa, although the content of Mo in TMS-238 is 
less than that in TMS-138A and TMS-196. All the TMS alloys 
perform better than CMSX-4, and exhibits a performance 
similarly to MX-4/PWA1497 at 900°C/392 MPa. The advantage 
of TMS alloys is much more pronounced at lower 
temperatures/higher stress and higher temperatures/lower stress 
conditions. Microstructure observations of crept specimens at 
1100°C/137 MPa are shown in Fig. 2. Finest lamellar structure 
found in TMS-238 attributed to its excellent creep property. 

 
The oxidation property was investigated and is shown in Fig. 3. 
TMS-196 showed an improvement over TMS-138A and has 
excellent oxidation resistance compared with other 4th and 5th 
generation superalloys [11]: however, it shows a large decrease in 
mass in the cyclic oxidation test because of scale spallation, and 
the oxidation resistance is still inferior to CMSX-4. CMSX-4 
shows a relatively stable profile but a slight decrease in mass is 
found after 50 cycles. Interestingly, TMS-238 shows a constant 
and gentle increase in mass change until 500 cycles and above. 
Cross-section images of oxide scales after 1 h of isothermal 
oxidation at 1100°C were observed and are shown in Fig. 4. TMS-
138A forms a very thick NiO layer at the surface, and spinel layer 
and thick internal Al2O3 dispersion zones are formed beneath the 
NiO layer. CMSX-4, TMS-196 and TMS-238 show a similar 
oxide structure consisting of NiO, complex oxides and a 
protective Al2O3 layer. The scale thicknesses of CMSX-4 and 
TMS-238 are almost equal and thinner than that of TMS-196. 
Kirkendall voids were found beneath the Al2O3 layer in TMS-196 
and TMS-238. From these observations, it is clear that TMS-238 
has superior oxidation resistance compared with CMSX-4 at 
1100°C, although it contains less Cr and more Mo and Ru than 
CMSX-4. It is possible that the higher Ta and lower W content 
may be beneficial in improving the oxidation resistance of TMS-
238. 

 
Table 1.  Nominal compositions (wt%, Ni bal.). 

 

Alloy Co Cr Mo W Al Ti Ta Hf Re Ru 

CMSX-4 9.6 6.4 0.6 6.4 5.6 1.0 6.5 0.1 3.0 0.0 

MX-4/PWA1497 16.5 2.0 2.0 6.0 5.55 0.0 8.25 0.15 5.95 3.0 

TMS-138A 5.8 3.2 2.8 5.6 5.7 0.0 5.6 0.1 5.8 3.6 

TMS-196 5.6 4.6 2.4 5.0 5.6 0.0 5.6 0.1 6.4 5.0 

TMS-238 6.5 4.6 1.1 4.0 5.9 0.0 7.6 0.1 6.4 5.0 

 
 
 
Table 2.  0.2% yield stress and UTS at 400°C and 750°C (MPa). 
 

400°C 750°C 
Alloy 

0.2% yield UTS 0.2%yield UTS 

CMSX-4 860 950 950 1150 

TMS-138A 830 906 868 1241 

TMS-196 879 1214 845 1308 

TMS-238 925 1373 1041 1348 
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Figure 1. Larson-Miller diagram of creep properties of the investigated alloys. 
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Figure 2. 1100°C /137 MPa crept microstructures of the investigated alloys. 
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Hot corrosion resistance has been evaluated by the crucible test at 
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Figure 3. Results of 1100°C cyclic oxidation tests. 
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Figure 4. Microstructures after 1 h exposure at 1100°C. 
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Hot-corrosion resistance was evaluated by a crucible test, and Fig. 
5 shows the metal losses of CMSX-4, TMS-196 and TMS-238 
after 20 h of soaking. TMS-238 had by far the lowest metal loss; 
hence, this alloy exhibits the best hot-corrosion resistance. It is 
likely that a lower Mo content and a higher Re content are 
responsible for this excellent property. Further investigation is 
required to elucidate the underlying mechanisms. 
 
Figure 6 shows the relationship between creep property and the 
oxidation resistance. The vertical axis is the oxidation resistance 
at 1100°C, which was originally defined as including the factors 
of isothermal mass increase and cyclic mass decrease, and it is 
expressed as  
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where w1 is mass gain after the 1st cycle and w50−w1 is the mass 
change from the 1st cycle to the 50th cycle in a 1100°C cyclic 
oxidation test. In this equation, 1/w1 is the isothermal oxidation 
resistance and a 1/|w50−w1| is the cyclic oxidation resistance. A 
larger value means better durability in both factors, and so the 
total oxidation resistance is expressed as the increase in the value 
in the vertical axis in Fig. 6. The horizontal axis indicates the 
rupture life (h) in the creep test at 1100°C/137 MPa. The open 
squares, diamonds, triangles and inverted triangles are symbols 

representing commercial 1st, 2nd, 3rd and 4th generation superalloys. 
The solid inverted triangle, solid circle and solid double circle 
stand for NIMS 4th, 5th and 6th generation superalloys. Superalloys 
were developed focusing on only their mechanical properties up 
to 4th generation, as shown by the gray arrows in the figure. 
However, the solid circle and the solid double circle in Fig. 6 
show that superalloys with good oxidation resistance and 
mechanical properties are being developed owing to the recent 
efforts to improve the oxidation resistance of these alloys. It is 
evident that TMS-238 has excellent mechanical and 
environmental properties and that these are in good balance with 
each other. 
 

Discussion 
 
The composition of alloys influence phase stability, / lattice 
misfit, microstructural evolutions, and oxides formations, which 
in turn affect surface stability and mechanical properties. The 
average  size of a conventional superalloy such as CMSX-4 is 
0.5 m. The lower  solvus temperature and higher Re content in 
TMS-238 limits the growth of  and slows the rate of diffusion 
after solution and aging heat treatment. With the addition of Ru, 
TMS alloys exhibit greater microstructural stability than CMSX-4, 
although TMS alloys contain a higher amount of refractory 
elements. This microstructure instability can be attributed to the 
higher Re and Cr contents, because both elements are very potent 
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Figure 5. Results of hot-corrosion tests. 
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in forming TCP phases; Re tends to heavily segregate into the 
dendritic core, in which TCP precipitates can first be observed. 
However, further reducing the residual Re segregation by added 
solution heat treatment can reduce the tendency for TCP and  
phase formation in TMS alloys. A previous study [10] suggests 
that a high Ru content in superalloys may not necessary imply 
greater microstructural stability, because the overall chemical 
composition needs to be balanced to prevent precipitations of both 
TCP and  phases. 
 
The differences between the creep behaviors of CMSX-4 and 
TMS alloys demonstrate the important role of / lattice misfit in 
influencing deformation mechanisms. The / lattice misfit of 
TMS alloys compared with that of CMSX-4 is more negative 
owing to the higher amounts of Re and Ru that partition 
preferentially into the  phase and expand the lattice parameter of 
. Increasing the / lattice misfit toward the negative not only 
enhances the rafting kinetics but also refines the dislocation 
network at the / interface during high-temperature creep. 
Although the formation of a raft is beneficial against creep in a 
high-temperature/low-stress condition, the rafted microstructure 
can be detrimental under intermediate-temperature/intermediate-
stress creep condition [10].  

 
It is very interesting to note that TMS-238 exhibits both strong 
creep and oxidation resistances, and the alloy composition has a 
higher Ta contents; the Mo content is relatively low to minimize 
the degradation in oxidation resistance typically observed in this 
class of superalloys that contain large amount of refractory 
elements.  Furthermore, TMS-238 has been designed to exhibit a 
slightly smaller lattice misfit between the  and  phases 
compared with TMS-196, so as to retain a greater coherency of 
the microstructure after heat treatment. For TMS-238, the 
combination of greater microstructure stability and an optimized 
refractory content result in an alloy exhibiting impressive 
resistances against creep, hot corrosion and oxidation. 
 
 

Conclusions 
 
Our recent work at NIMS shows that advanced 5th generation 
superalloys can be developed having excellent resistance against 
high-temperature creep, oxidation and corrosion. This paper 
demonstrates that the TMS-238 superalloy is a promising 
candidate alloy for turbine blade applications, because this 
material possesses a balance of the properties desired by gas 
turbine engine manufacturers to improve engine efficiency. We 
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Figure 6. Graph showing comparisons among alloys in terms of a combination of 1100°C/137 MPa creep and 1100°C oxidation 
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believe that our 6th generation single-crystal superalloy TMS-238 
has the most excellent and well-balanced mechanical and 
environmental properties among the existing superalloys. 
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